0%

Codeforces 103D Time to Raid Cowavans 分块

有数组\(A[N], 1\le N \le 3 \cdot 10^5\)\(P\)次查询,对于每次查询给出\(pos\)\(k\),求\(\sum\limits_{pos + m \cdot k \le N}^{} A[pos + m \cdot k]\)

把所有查询按\(k\)分组,\(k \le \sqrt N\)的组\(O(N)\)处理,\(k \gt \sqrt N\)的组在\(O(\sqrt N)\)时间内处理, 总复杂度为\(O(\sqrt N \cdot N \ + \ (N - \sqrt N) \cdot \sqrt N) = O(2 \cdot N \sqrt N - N) = O(N \sqrt N)\)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
#include <bits/stdc++.h>
#define DBG(x) cerr << #x << " = " << x << endl

using namespace std;
typedef long long LL;

const int N = 300000 + 16;

struct Query {
int st, k, id;
LL ans;
Query(int st, int k, int id): st(st), k(k), id(id) {}
Query() {}
};

LL a[N], v[N];
vector<Query> Q[N];
int main(int argc, char **argv) {
int n;
while(~scanf("%d", &n)) {
for(int i = 1; i <= n; ++i) scanf("%I64d", &a[i]);
for(int i = 1; i <= n; ++i) Q[i].clear();
int q; scanf("%d", &q);
vector<int> have;
for(int i = 0; i < q; ++i) {
int st, k; scanf("%d%d", &st, &k);
have.push_back(k);
Q[k].push_back(Query(st, k, i));
}
sort(have.begin(), have.end()); have.erase(unique(have.begin(), have.end()), have.end());
int sq = sqrt(n + 1);
for(auto k : have) {
if(k >= sq) {
for(auto &query : Q[k]) {
int pos = query.st;
LL res = 0;
while(pos <= n) {
res += a[pos];
pos += k;
}
query.ans = res;
}
} else {
fill(v, v + n + 1, 0);
for(int i = n; i >= 1; --i) {
v[i] = a[i];
if(i + k <= n) v[i] += v[i + k];
}
for(auto &query : Q[k]) query.ans = v[query.st];
}
}
vector<LL> ans(q);
for(auto k : have) for(auto query : Q[k]) ans[query.id] = query.ans;
for(auto x : ans) printf("%I64d\n", x);
}
return 0;
}