模板
1  | const int N = 1000000 + 16;  | 
get方法中\(0 \le l \le r < len(a)\),get_for_len方法中\(l \in [0, len(a)),len \in [1, len(a) - l]\)。
原理
\(p_i = k^i\)
\(h_i = \sum\limits_{j \in [i,\ len(a))} a_j \cdot k^{j - i}\)
\(get(l, r) = h_l - h_{r+1} \cdot k^{r - l + 1}\)
\(= \sum\limits_{j \in [l, len(a))} a_j \cdot k^{j - l} - \sum\limits_{j \in [r+1, len(a))} a_j \cdot k^{j-r-1} \cdot k^{r-l+1}\)
\(= \sum\limits_{j \in [l, len(a))} a_j \cdot k^{j - l} - \sum\limits_{j \in [r+1, len(a))} a_j \cdot k^{j-l}\)
\(= \sum\limits_{j \in [l, r+1)} a_j \cdot k^{j - l} + \sum\limits_{j \in [r+1, len(a))} a_j \cdot k^{j - l} - \sum\limits_{j \in [r+1, len(a))} a_j \cdot k^{j-l}\)
\(= \sum\limits_{j \in [l, r+1)} a_j \cdot k^{j - l}\)
\(= \sum\limits_{j \in [l, r]} a_j \cdot k^{j - l}\)
在实现的时候用到了unsigned long long的自然溢出,相当于\(\mod 2^{64}\)。
例题
HDU 1711 Number Sequence 1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
using namespace std;
const int N = 1000000 + 16;
struct Hash {
    const unsigned long long KEY = 137;
    unsigned long long h[N], p[N];
    int len;
    void init(const int a[], int len) {
        this->len = len;
        p[0] = 1;
        for (int i = 1; i <= len; i++)
            p[i] = p[i - 1] * KEY;
        h[len] = 0;
        for (int i = len - 1; i >= 0; i--)
            h[i] = h[i + 1] * KEY + a[i];
    }
    unsigned long long get(int l, int r) {
        return h[l] - h[r + 1] * p[r - l + 1];
    }
    unsigned long long get_for_len(int l, int len) {
        return h[l] - h[l + len] * p[len];
    }
} hp, hs;
int a[N];
int get_ans() {
    for (int i = 0; i + hs.len - 1 < hp.len; i++)
        if (hs.get_for_len(0, hs.len) == hp.get_for_len(i, hs.len))
            return i + 1;
    return -1;
}
int main(int argc, char **argv) {
    int T;
    scanf("%d", &T);
    while (T--) {
        int n, m;
        scanf("%d%d", &n, &m);
        for (int i = 0; i < n; i++)
            scanf("%d", &a[i]);
        hp.init(a, n);
        for (int i = 0; i < m; i++)
            scanf("%d", &a[i]);
        hs.init(a, m);
        printf("%d\n", get_ans());
    }
    return 0;
}
/**
2
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 1 3
13 5
1 2 1 2 3 1 2 3 1 3 2 1 2
1 2 3 2 1
6
-1
*/